Smoothing Sqp Algorithm for Non-lipschitz Optimization with Complexity Analysis

نویسندگان

  • WEI BIAN
  • XIAOJUN CHEN
چکیده

Abstract. In this paper, we propose a smoothing sequential quadratic programming (SSQP) algorithm for solving a class of nonsmooth nonconvex, perhaps even non-Lipschitz minimization problems, which has wide applications in statistics and sparse reconstruction. At each step, the SSQP algorithm solves a strongly convex quadratic minimization problem with a diagonal Hessian matrix, which has a simple closed-form solution. The SSQP algorithm is easy to implement and has almost no time cost to solve the convex quadratic minimization subproblems. We show that the worst-case complexity of reaching an ε scaled stationary point is O(ε−2). Moreover, if the objective function is locally Lipschitz, the SSQP algorithm with a slightly modified updating scheme can obtain an ε Clarke stationary point at most O(ε−3) steps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing Quadratic Regularization Methods for Box Constrained Non-lipschitz Optimization in Image Restoration

Abstract. We propose a smoothing quadratic regularization (SQR) method for solving box constrained optimization problems with a non-Lipschitz regularization term that includes the lp norm (0 < p < 1) of the gradient of the underlying image in the l2-lp problem as a special case. At each iteration of the SQR algorithm, a new iterate is generated by solving a strongly convex quadratic problem wit...

متن کامل

Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem

In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...

متن کامل

Worst-Case Complexity of Smoothing Quadratic Regularization Methods for Non-Lipschitzian Optimization

Abstract. In this paper, we propose a smoothing quadratic regularization (SQR) algorithm for solving a class of nonsmooth nonconvex, perhaps even non-Lipschitzian minimization problems, which has wide applications in statistics and sparse reconstruction. The proposed SQR algorithm is a first order method. At each iteration, the SQR algorithm solves a strongly convex quadratic minimization probl...

متن کامل

PRISMA: PRoximal Iterative SMoothing Algorithm

Motivated by learning problems including max-norm regularized matrix completion and clustering, robust PCA and sparse inverse covariance selection, we propose a novel optimization algorithm for minimizing a convex objective which decomposes into three parts: a smooth part, a simple non-smooth Lipschitz part, and a simple non-smooth non-Lipschitz part. We use a time variant smoothing strategy th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012